|

GPO PRICE

CSFTI PRICE(S) $

Hard copy (HC)

Microfiche (MF)

53 July 65

UNIVERSITY OF ARIZONA

Electrical Engineering Department, College of Engineering

Analog/llybrid Computer Laboratory

ACL Memo No. 160

Hybrid-Computer Monte Carlo Techniques for Finding

Eigenvalues of Partial Differential Equations

Richard D'Aquanni

September 1968
$

?,(/0

— .
N | DRAFT

’LPM !

FACILITY FORM 602

(PAGES) {CODE) ,
7
e -qL
{NASA CR OR TMX OR AD NUMBER) (CATEGORY) {




Abstract

This paper describes a Monte Carlo technique for estimating

the lowest eigenvalues of certain elliptical partial differential
equations with various boundary conditions. A stochastic procesé
.whose output conditional probability density distribution satisfies
a partial differential equation similar to the partial differential
equation under consideration is, along with the boundary conditions,
implemented on ASTRAC II, a fast repetitive analog computer.

Eight different boundaries in one, two, and three-dimensional
space were implemented, resulting in eight lowest-eigenvalue
estimates, which are compared to the true lowest eigenvalues.
Computer hardware errors, along with the error resulting from the
mathematical approximation employed in deriving the estimate, are
indicated. Corrective measures are included when necessary.
Applications result from a presentation of analogies relating the
partial differential equations under consideratioh to partial
differential equations modeling physical processes.



I. INTRODUCTION

Numerical solutions for the lowest eigenvalues of certain
partial differential equations are sometimes difficult to de-
termine if one employs standard numerical techniques. A list of
these standard techniques should include the finite difference(l3)
method, Galerkin's method and the energy method of Rayleigh-Ritz.
Less standard, yet more sophisticated when applied to specific

problems, are t??BTethOds of point matchin?lgr collocation,(l7'20)

. . 19)
segment matching , and conformal mapping.

A Monte Carlo method applied to lowest-eigenvalue estimation
has been introduced and mathematically illustrated by Donsker and
Kac. Theoretically, Donsker and Kac suggested generation of a
stochastic process (represented by generalized Langevin equations)
resulting from the application of a white-Gaussian-noise forcing
function to a first-order system, (see Appendix A). The conditional
probability density function of the output variable (which completely
describes the output process, since it is a first-order Markov
process) satisfies Kolmogorov's backward partial differential
equation. The determination of eigenvalues of various determi-
nistic differential equations is based on these Kolmogorov back-
ward partial differential equations.

In this paper, a stochastic process is generated, and applied
in the estimation of the lowest eigenvalues of a number of geometric
one, two, and three-dimensional boundaries representing the bodies
under consideration. Realizing that randomness, the basis of
Monte Carlo Methods, requires many repetitions for accurate and
consistent estimates, we turn to the computer as the only feasible
means to implement such a process. The computer to be employed is
the second in a series of Arizona Statistical Repetitive Analog
Computers, ASTRAC II. 4
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'II. EXAMPLE_PROBLEM

The implementation of one typical problem in detail will
illustrate the Monte Carlo Technique employed. The sampling
procedure and formula constituting the technique are common to

all eigenvalue problems considered in this paper.

The problem considered is that of determining the lowest
eigenvalue of a vibrating string. The linear partial differential
equation governing small transverse vibrations of an elastic

. . . . (14)
string under fixed constraints 1s§ 4)

22U (x, t) ='52U(x,t) (1)
ax2 at2

where U(x,t) is the transverse vibration amplitude at position x
at time t, and where the normally encountered coefficient c2.= T/p
has been normalized to unity through a linear transformation in

the x'coordinate.

The boundary conditions on the above equation will be taken as

U(-10,t) = O (t = 0) (2)
U(10,t) =0

and the initial condition is
U(x,0) = f(x) (- 10 <« x < 10) (3)

The computer set-up for the above problem is given in Figure 1.

First observe the zero-mean (capacitor-coupled) one dimensional guas-

8ian distributed random walk resulting from the integration of a

binomially distributed random square wave. N(T), the random square

wave has a variance 2Dn empirically measured as 30 x 10’6 voltsz-sec.

(2,13)

”'v——\v\ﬂs'tq;\‘qﬂ . e

Transitions in the amplitude of N(T) may occur only at times
Specified by the noise clock frequency used to drive the random
noise generator. It is important to note that the random walk's
smallest step size y(4T) is a function of the noise clock frequency, 
the amplitude of the random square wave and the integrator
gain G or l/RC' Next, observe how random walk excursions beyond
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either the + 10 volt or =10 volt fixed string boundaries are de-
tected by use of two fast-analog-comparators. The logic gates
and flip-flop following the comparators are necessary for re-
setting integrator and hence walk initial conditions., Finally,
observe the binary counters and associated logic used in tallying
" both the number of walks completed and the number of walks re-
sulting in boundary absorbhtion corresponding to total walk time,
wT.",

i

Typical waveforms appearing in the simulation are given in
Figure 2. Figure 2A illustrates the basic timing pulse R which
sets the repetition rate and the length of the random walks. Ti
may be varied by similarly varying the duty cycle of R.

In Figure 2B, the random walk is shown along with the ab-
sorption boundary levels, +10 volts. 1In the first frame of the
diagram, an absorption at the +10 volt boundary has occurred.
In the second frame, no absorption has occurred during the time
interval allotted for the walk, and the signal is reset at the
end of this interval marked by R. In the third frame, the
signal has reached the -10 volt level; the walk stops at this
point and the integrator is reset to its starting position once
again. Figures 2C and D show the comparator outputs which
correspond to a +10 volt and -10 volt absorption, respectively.
Figure 2E shows the integrator mode timing signal corresponding

to the signals shown in Figures 2B, C and D.

Figure 2F indicates the pulses inputted to the binary counter

corresponding again to Figures 2B, C and D. Figure 2G indicates
waveform R' which controls the number of repetitions and time
between repetitions.

In general, the dimensionality of the boundary or describing

partial differential equation would require just that many inde-

pendent noise sources with boundaries for each variable. Imple-

mentation of two and three dimensional boundaries are illustrated

in Figures 3A and 3B respectively.



The one dimensional random walk (Wiener Levy process) imple-
mented in the above example satisfies the following stochastic

differential equation of motion:

" D - an(m) - (4)
(7,9,12)
known as the Langevin equation.

This equation corresponds to a Markov process with its pr?yagii%}y
B— density satisfying Kolomogorov's partial differential equation s

given as:

2
G2p 2Ulxt) o AU(xt) (5)
n ax2 ot

Introducing the normalized time variable

T=t/G2D

Equation 4 may be written as:

2

37U(x,T) = ~ 3U(x,T)
3x 3T (6)

As described in the Appendix, satisfaction of Equation 6 with the
probability desnity of Equation 4 results in the following estimate

for the lowest eigenvalue, A,:

where Nt‘ is the number ¢f walks which remain within the boundaries
.’ i ;

during the time interval (O,ti) Note that N is calculated from
i

, ;
| o
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the number of walks absorbed out of the total number of walks
completed. This information is outputed from.the computer simulation.

e e s e
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III. EXPERIMENTS WITH VARIOUS BOUNDARIES

A. Experimental Design

Proper utilization of our eigenvalue estimates, given by
Equation B depends upon the correct choice of ty and 4t and hence
on the choice of Tl' AT, and on our random step size "y". The
sensitivity of the estimate variations in random walk source
point and on dimensional boundary changes should also be de-
termined if the estimate is to apply to the determination of

lowest eigenvalues for boundaries of any shape and size.

Since time increments, step size, and possibly random walk

starting point are all correlated, two initial choices were made:

1) Start all random walks from a point more or less centered
with respect to the boundary.

2) Choose a step size of 0.5 volts, based on a 20 volt

(+10) boundary in all directions.

The criterion employed in initially selecting AT was to
choose a AT covering the largest percent change in N, while
remaining within existing computer time limits. Figure 4, which is
a plot of Nt vs. T = t/DG2 for a one-dimensional boundary, was
utilized in making an initial decision. Also included in Figure 4
is a plot for the curve e~-A T, where A is the true eigenvalue.

As expected, the curves agree quite closely. Trial of several
combinations of T, and AT yielded T, = 125 p sec. and T, = 525

J sec. as values which produced the best estimate for our one
dimensional boundary. These values were also chosen to represent
all T values in two and three dimensions in the #10 volts bounded,
0.5 volt step size, cases.

Statistically, the estimated eigenvalue "\" converges to

the true eigenvalue as the sample size "N" increases.

ASTRACT II enables the user to take up to 1,000 walks/second
with fast multipliers, comparators, and digital logic to accomodate
this high repetition rate. I chose to take a fixed 10,000 samples,
thus taking full advantage of ASTRACT II's speed while assuring
statistical convergence.
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B. Parameters, Estimates and Errors

The boundaries considered in this paper and their corresponding
true eigenvalues are tabulated in Table 1. The parameters, final

estimates, and associated errors for each boundary are shown in

the fixed tabular block forms given below, The one dimensional

boundary is given special treatment in that graphs indicating
the eigenvalue estimate's probability density distribution and
the effect on the estimated value due to variations in the random

walk source point are presented. Also, the terminology used

in all tabular blocks will be presented here,

1. Numerical Parameters, Results, and Errors

A. One Dimensional Boundary or Vibrating String

Tl = 125 u sec N = 10,000 walks
T, = 525 u sec fn = 1000 walks/sec
AT = 400 u sec fnoise = 1M Hz
y = 0.5 volts/u sec clock
g1 = 0.125 x 10°

izg = 0.166485 for Y, =0
s2 = 4.19 x 107°
s = 6.47 x 107°

) e = 5.98%

v e o e e ]
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where: (1) Xm is the estimated Eigenvalue based on
m samples of 10,000 walks each

(2) S° is the sample variance
- (a2

(3) S 1is the sample standard deviation

(4) € 1is the error of the estimated Eigenvalue

from its true value. \

In addition to the above results, Figures 5 and 6 indicate
the normally distributed density of the estimated eigenvalue,
and the variation. in the estimate with changes in the walk source
point, respectively. Although only 29 eigenvalues were estimated,
Figure 5 does indeed indicate an approximately normal distribution
with mean range including the true mean eigenvalue. Figure 6
indicates that all sample eigenvalues are geometrically insensitive, .
i.e., less than 5% statistical error from true value, to initial
random walk point variations within +16% from midpoint to boundary.
Beyond +60%, the estimates became progressively inaccurate due to
the failure of the circuitry to record a hit and reset the inte-
grator at_the rapid rate at which the boundary hits occurred.

2. Two Dimensional Circular Boundary

Tl = 125 u sec N = 10,000 walks
T2 = 525 u sec fR = 1,000 walks/sec
AT = 400 u sec fnoise = 1 M Hz

y = 0.5 Volt/u sec clock

¢/T = 0.125 x 10°
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>

Ay = 0.226649 for (x_, y,) = (0,0)
s2 = 0.90 x 107°

s = 9.48 x 107%

e = 5.75%

For XS originating at X, = 0; Yo = 0.5, 1, 2, 3, 4, 5 and € volts

No error from estimated value at (0,0) greater than 1.5% was

recorded. See Figure 7A for photograph of walks within this koundary.

3. Two Dimensional Square Boundary

Tl = 125 u sec N = 10,000 walks
T2 = 525 u sec fR = 1,000 walks/sec
AT = 400 u sec fnoise ' = 1'MHz
‘ clock
y = 0.5 volts/u sec g/f = 0.125 x 10
\g = 0.218445 at (xo, yo) = (0,0)
€ = 1.66%
v Xq = 0; Yo = +.5, 1, *3 and 5 volts
For XS originating at and
x =y_. = 0.5, *¥1, +2, 3 volts

No error from estimated value at (0,0) greater than 3.45% was
recorded.

4. Two Dimensional Rectangqular Boundary

Tl = 125 u sec N = 10,000 walks
T2 = 525 u sec fR = 1,000 walks/sec
AT = 400 u sec £ oise = 1 M Hz

y = 0.5 volts/u sec clock

g = 0.125 x 10°
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XS = 0.231229 at (x_, y.) (0,0)

= 7.99%

For XS originating at (2, 1.5) an error of 2.9% from estimate.

at (0,0) was recorded. See Figure 7B for photograph of walks within
this boundary.

, 5. Two Dimension Ci B i Vv
Tl = 1250 u sec N = 10,000 walks
T, = 5250 u sec fR = 100 walks/sec
AT = 400 u sec s J = 100 K Hz
noise
y = 0.5 volts/ clock 7
10 u sec t/T = 0.125 x 10
is = 0.223796 at (x_, y,) = (1,0)
= 3.47%
6. Three Dimensional Spherical Boundary
Tl = 125 u sec N = 10,000 walks
T, = 525 u sec fR = 1,000 walks/sec
AT = 400 u sec fnoise = 0.5 M Hz
y* = 0.5 volts/ clock
2 u sec t/T = 0.0625 x 10°
A = 0.321350 for (x_, Y., zo) = (0,0,0}
e = 2.39%

For i oriéinating at (1,1,1) an error of 2.22% from
estimate at (0,0,0) was recorded.

R TP - )

e e
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7. Three Dimensional Cubical Boundary

Tl = 125 u sec N = 10,000 walks
. T, = 525 u sec | £, = 1,000 walks/sec
AT = 400 u sec fnoise = 0.5 M Hz
y* = 0.5 volts/ clock
2 u sec £/T = 0.0625 x 10°
XS = 0.250788 for (x_, v, z,) = (0,0,0)
e = 7.82%

For For XS originating at (1,1,1) an error of 0.235% from
estimate at (0,0,0) was recorded.

8. Three Dimensional Cylindrical Boundary

Tl = 200 u sec- N = 10,000 walks
T2 = 800 u sec fR = 1,000 walks/sec
AT = 600 u sec fnoise = 0.5 M Hz
y. = 0.5 volts/ clock
| 2 u sec ¢/T = 0.0625 x 10°
£ = 0.280305 for (x_, vy, z;) = (0,0,0)

2.41%

. €

For XS vwith walk originating at (1,1,1) an error of
0.259% from estimate at (0,0,0) was recorded.

*Here an integrator input resistance equal to 2K rather than the
normally used 1K input resistor was employed.

Ny, =
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IV, Error Sources

A, Estimate Approximation Error

Our lowest eigenvalue estimate repeated here for convenience.

>>
Z

[\
[y

is based on the assumption that both t and t2 are large, thus
enabling the higher order eigenvalue expontentials to approach
zero. With our values of tl = 15.625 sec and t2 = 65.625 sec

this error is negligible.

B. Egquipment Considerations

1.) Our noise source has a bandwidth of 500 KHz which,
compared to the 30 MHz bandwidth of ASTRAC II amplifiers, is the
band limiting device in our study. The white-noise assumption is,
however, valid for sufficiently long steps (i.e., by increasing

G) thus insuring independence between steps and hence randomness.

2.) At the very start of the random walks, the mean or
d.c. component of the random noise source is not properly filtered
out by the slowly charging 10 uf. capacitor. Although this initial
charging time could lead to erroneous biased random walks, it was
easily overcome by merely running the computer until the capacitor
was fully charged, prior to any recordings.

. 3.) Amplifier drift errors were kept below 1% of 10v.

(100 mv) by ensuring that the offset voltage K satisfied:(z)

3

K < 107 72DG (5)
i = = = 100
Notice for fp 'lOOO runs/sec and fnoise 1 MHz or for fg
. clock _ .
rups/sec and fnoise“ = 100 KHz with ginnut = 1K in both cases,
clock . ) -3 -
the value for 2D G is 3.0 x 10°~, For the amplifiers

5

used in ASTRAC II, K < 20 x 1077, which is well within the

conditions of Eguation 9.
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4.) Tht The comparators and logic must respond quickly
enough in recording a boundary hit and resetting all integrators
before another step occurs. ASTRAC II's fast comparators and
logic do indeed accomplish this feat within less than 1 u sec,
within the smallest possible time for a step with the fastest
noise-clock frequency of 1 MHz, |

5.) Because comparator static hysteresis (10 millivolts),
requires a boundary absorption rather than just a hit for detection,
a boundary hit for a one-dimensional boundary has a small proba-

bility
. N i .
( il
1 - :Ej i+ 1 (;) .J where 1) is always odd and <N
2 2 and 2) N = t/T
i=1

noise clock

of not crossing the boundary in time "t" remaining after a boundary
hit, and thus boundaries are defined only within +10 mv. This
applies to multi-dimensional boundaries as well.

6.) As expected, (Fig; 8) ' estimate errors as a result
of small noise-step sizes exist due to the increasing dominance
of computer drift, while tra&ncation errors become significant as
larger step sizes are employed. Also, the small number of binary
distributed random step events tallied over our fixed time interval
results in a poor binomial approximation to a normal distribution.
This last error may be reduced by choosing T, = (O’s/x) 125 u seconds

1
and T, = (9-5/x) s25 J seconds.

e T p e i
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V. APPLICATIONS

As mentioned previously, the partial differential equations
considered may describe a variety of physical processes including
the vibration of a spring or two dimensional membrane, or the
motion of electromagnetic waves in a waveguide or of neutrons in
a nuclear plant,

The first application concerns the determination of cutoff
frequencies of waveguides. Although applicable to waveguides of
any cross-sectional contour, this Monte Carlo technique compares
with, and in some ways surpasses, other techniques when applied to
cross-sectional contours for which closed form solutions obtained
through classical methods are non-existent. The importance of this
application may be observed by noting the operational advantages

in employing an arbitrarily contoured cross-sectional waveguide.(ls)

The propagation of an electromagnetic wave in a waveguide
in an axial direction as shown in Figure ¢ is mathematically
represented by Helmholtz's partial differential or wave equation:

sz(x,y) + ki v(x,y) =0

where: v (x,y) is the potential function
v is the two-dimensional Laplacian Operator

K.'s are real discrete frequency parameters representing

. ; cutoff frequencies analytically given as:
kK? = k3 - x?
o z
Kg = wz/uoeo
K2 = 2n/ig
A defined as the waveguide wavelength
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In the T.,M. wave mode

Y[L(x,y)] =0

where: L(x,y) = 0 is the equation of the boundary of cross

section.

The solution of the wave equation with the above boundary
condition for the lowest cutoff frequency Kl' may be accomplished
through utilization of the Monte Carlo technique and in fact yields
the eigenvalue describing the first mode of vibration of the two-

dimensional membrane described by the wave equation.

A second application concerns the criticality problem
associated with nuclear reactors. The criticality problem asks
whether a pulse of neutrons when injected into a nuclear reactor
assembly will cause a multiplying chain reaction or will merely be
absorbed. More specifically, it is concerned with the size of
the assembly at which reaction is just able to sustain itself.

The criticality constant defining a subcritical, cirtical
or supercritical combination reactor assembly and absorbent
material can be determined by making a simple comparison between

a directly measureable quantity known as the material buckling
coefficient and the geometric buckling coefficient Bg(22.
21 ’
Bg is mathematically given by( ):
1
2 2
B = -V R(r)

93 R(r)

or as:

2

V2R(r) + Bg.R(r) =0

i
where: R(r) describes the neutron flux density at coordinate

position r.

v®, 1is the three-dimentional Laplacian operator.




-17-
. (8)
The criticality problem is indeed an eigenvalue problem as we
recognize that the solution of the above standing-wave equation

for Gg yields the eigenvalue describing the first mode of bibration
1

of the three-dimensional body.

Just as the lowest eigenvalue solutions to the partial
differential equations describing motion of membranes are sub-
ject to the boundary conditions that the edges of the membranes
are in a fixed position, so too are the buckling coefficient
solutions to the partial differential equations describing the
neutron density distribution in an operating reactor subject to
the boundary condition that the flux must approach zero along the
boundary of the reactorfzz) |
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VI. CONCLUSION

The feasibility of a Monte Carlo method applied toward the
estimation of lowest eigenvalues of partial differential equations
has been demonstrated.' The accuracy of all eight estimates (<8 |
percent) appear to satisfy engineering needs where close approximations
are usually sufficient.

The availability of fast-repetitive analog computers such
as ASTRAC II makes this method potentially attractive. With these
computers, we are able to solve partial differential equations for
their lowest eigenvalﬁes with, as compared to current methods, a
minimum amount of computation time. This is especially attractive
for multidimensional problems.
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. APPENDIX A

This appendix describes the theorywhich yieldsthe eigenvalue

of boundary value problems,

Consider the following problem,

~

L= U() + k2U (%) = 0

-
[ S
A

where U(r) is defined within a bounded region R. On the boundary

C, of R, the function UC(;b) is defined to be zero. The non-trivial
solutions of (A.l) which satisfy this boundary condition are called
the eigenfunctions of the problem, and the corresponding values

of k are, the eigenvalues. The problem is to formulate a

Monte Carlo procedure to calculate the lowest eigenvalue of (a.1).

It will be assumed that the differential operator is such that:

a) the eigenvalues k, are real (L is Hermitian)
b) the operator L will yield a discrete set rather than

a continuous spectrum of eigenvalues.

The generalized time invariant operator L(r) is given below for

ann dimensional space.

.

L(r)U(r) = - E: g__[ci(r)U(r)] +_;_§:§E___Irsz(r)U(rﬂ (A_é;
i

or. / ,
rl 23,2 rJrz

hoda it oo aes 4 S L0 L L gtR gl W R S R e Riatis BRI (it Lo MFC R B - Ty 4 : a . A RS B o



Conceptually, it is perhaps easiest to discuss this problem
in two dimensions; however, the procedure holds for n dimension

providing that the region R and its boundary are properly defined.

Consider a two-dimensional random walk originating at an
interior point (xo,yo) of R. Let Q(xo,yo,t) denote the probability
that the particle will not be absorbed (stay within the boundary)

in a time t given that the walk starts at a time t = 0.

Now,

=0 ‘
Qlx vy, t) J,Rj plx,y,t x,y ddxdy (A.3)

where p(x,y,t/xoyo) represents the probability density that at

time t the particle performing the random walk is at point (x,y)

given that it originated at (xo,yo). Integration over the entire
region R produces the probability that the particle remains within the

absorbing boundary C.

Since we are dealing with a Markov process (by assumption), the
conditional density function p(x,y,t/xo,yo) satisfies Kolmogorov's

)

foward partial differential equation.

.':L_p(xl Y, t/xo'Yo) -

=T p(x,y,t/xo,yo) (A.4)

L
XY

with the following conditions.

P(X.y,t/xo,yo) =0on C for t # 0

i.e., the boundary is an absorbing one



A-3

p(x,y,.t/xo.'yo) —> olx-x_)ely-yy) as t —» 0

where & denotes the Dirac delta function.

‘The general form of equation (A.4) is the following

ap (T, /7 L 2 l-c. (F,t)plr.t/r ,t )‘]
_a%(r't/ro'to) T dr Lt e o
. . i
i
| + _:L. Z_a.i_—_fDm z(;)p(;,t/;o,to)] (A 5)
2 armarﬁt ! .
where

the terms Ci(;) and D_ z(;) are obtained from the generalized
()

Langevin equations given below.

Considering a three dimensional case, r, =x, r, =Y, ry = z,

we have
Q-&+-A(xyzt)=B(xyzt)N(t) (A.6)
dt l ’ ? ’ l ’ ’ ’ l .
d
o+ A (xv.2,t) = By(x,y, 2, £)N, (£) (A.7)
§—Z-+A(x z,t) = B,(x,y,2z,t)N,(¢t) (A.8)
dt 3 IYI ’ 3 ’ ’ ’ 3 .

EEERY o bR e



It is assumed that both A, and B, vary slowly with
time when compared to the rapid variations of Ni(t). The noise
terms Ni(t) are uncorrelated stationary white gaussian noise sources

with zero mean and power spectral density 2Dni.

The relationship between the coefficients of the Langevin

equations and the terms in the operator L(r) is given by

c (r,t) = -a,(r,t) (A.9)
c,(r,t) = -A, (r, t) (A.10)
Cy(r,t) = -ay(r,t) (A.11)
D, (r,t) = 2Dnle (v, t) (A.12)
D,,(r,t) = 2Dn,B2 (¥, t) (A.13)
D, (F,t) = 2Dn B2 (T, t) (A.14)
Dy, =Dj3 =D,3 =0 (A.15)

>

If the operator ny in equation (A.4) is of such a nature

that the method of separation of variables can be applied to the

partial differential equation, then we assume that

p = T(t)U(x,y) (A.16)

- -
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Substitution in Eq. A.4 yields

U(x,y) B (A.17)

T"('t)U_(x',y_) =”'1‘(t)Lx'y

‘Division of both sides of the above equation by
T(t)U(x,y) gives |

1 (g) Dy VOV (A.18)

T(t) ~ U(x,y)

Since the space coordinates do not appear in the left hand

side and time does not appear in the right hand side, both

sides of the equation are set equal to a constant, -k2

’
L o (A.19)
Equation (A.19) yields solutions of the form
T(t) = exp(-k°t) - (A.20)

The other equation which results from this technique is

2 .
L = A.21
x'yU(x,y) + k°U(x,y) 0 ( )
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Where U(x,y) is zero for (x,y) on the boundary, which results
from the condition that p(x,y,t/xo,yo) = 0 on the boundary

Equation (A.21) along with the boundary conditions yields a
set of orthonormal functions, wj(x,y) corresponding to values of
k = kj .

The solution to (A.4) can be written in series form in terms

of the eigenvslues and eigenfunctions as,

~k.t
- > ]
p(x,y,t/xo,yo) Aje ‘PJ. (x,vy)

Where the kj's are assumed to be a decreasing discrete set of

real numbers.

Using the initial conditions on the conditional density function
p(x,y,t/xo,yo) —_— a(x—xo)b(y—yo) as t — 0 equation (A.22) may

be written as

<]

6(x—x0)6(y—yo) = Z Pj‘yj(x,y) (A.23)
j=1

Multiplying both sides of the above equation by Ym(x,y) and

integrating over R

J;_{J Yo (%, ¥) 8 (x=x_) 8 (y-y, ) dxdy - (A.24)
o
=/ L AjYy (x,y) v (x,y)dxdy (A.24)

j=1



If the series representation of the conditional density
function (A.22)'is'uniformly convergent then the order of
integration- and summation cén be interchanged, resulting in the
following_equation:

[+

‘i’k(xolyo)' = Z A-dr

5 j Yj(x,y)wk(x,y)dXdy (A.25)
R

j=1

Since the Wk's are an orthonormal set, wk(xo,yo) = Ay,

and equation (A.22) can now be written in the form,

p(x.y,t/xo,yo) = e wj(xo,yo)wj(x,y) (A.26)
j=1

Substitution of this expression into equation (A.3) yields

© _k2 £
Q(xo,yo,t) = &af j{: e Yj(xo,yo)Yj(x,y)dx dy. (A.27)"
j=1

z 2
-kTt
J ' '
Q(xo,yo,t) é e Yj(xo'yo)%{j yj(x,y)dx dy (A.28)

j=1
If f f Yj(x,y)dx dy = Bj then
R
= k2

= j .29
Qx .y, t) e wj(xo,yo)Bj (A.29)

j=1

maa B R R Rt o R Rt L P R e B S a R A L L

LY e bl YW q’-ﬁﬁxm
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Expanding the series,
k2t k2t
Qlx_,y ,t) =€ wl(xo,yo)Bl_+ e Yz(xo,yo)B2

e (a.30)

‘ Since the k's are an increasing set of real numbers, for large

values of time, the first term of the series is the only significant
term and equation (A.30) may be written as follows

, -kJt
Q(XQ,YO;#) N‘e Yl(xO'YO)Bl

=N

Taking logarithms of both sides of the equation yields,

_1no(x_,y..t) - lny,(x_,y_)B
2 _ ‘o'" o ~ 1'7o'?o’ 1
kl = — , +4 . ey (A.32)
:_Taking the limit as t — »
_ _ | lim . =lnQ(x t)
2 _ - O:YO,
Ky =E e t (A.33)

“When finite time is i
. en finite time t, is involved, the calculation of the lowest
~ eigen e o ‘ ic 1 .
. :g value of equatlon (A.1) by means of equation (A.33) is subject
. to t ‘ » i | '
| wo sources of error. The first is due to neglecting all the

térm F : i ' i
s in the series representation (A.29) after the initial one

ing the quantity

o
o]
Q,
ct
oy
1]
[14)]
.
0
0
5
o}
n
O
oo
N
o]
]
O
+h
M
s |
)
(o]
[a]
a]
1))
n
c
=
t
n
[}
~
9
=
=3
®
Q
—
0
N
t
=~
=
Q

1n
| ‘i’l(xo.yo)Bl .
t : for the finite values of time since in any computa-

ti ’ o .
onal scheme a finite value of time must be employed. This

latt ' ,
‘ er source of error is removed by the following procedure:

‘, c et andiU O DIFRL P TR LN o e - A 4
i s \ yt 'y, ey, e . BN s e - ~am . . H
' r“‘ LIRY B ! B L ) . ' IR ) ) v

ACCMENF L R .. : .
: v . .



Consider equation (A.30) for two large values of time tl and

t2' i.e.;

-kt

Q(xo,yo,t) = e \yl(xo,yo)Bl (a.34)
‘kftz

Q(xo,yo,t) = e Yl(xo,yo)Bl (A.35)

Dividing equation A.35 by equation A.34, one obtains

2
Qx ,vy ,t,) € .
o'“o’" "1

Taking logarithms again yields

5 an(xo,yo,tl) - an(xo,yo,tz)
kl = (A.37)
t -t;

The quantity Q(xo,yo,t)prepresenting the probability that a
particle which begins a random walk at a point (xo,yo) will
remain within an absorbing boundary C during the time interval tl'

can be approximated by the following sampling procedure.

Start a particle on a random walk from the point (xo,yo) at
time t = 0. The rules governing the random walk are given by
the generalized Langevin Equations A.6, A.7 and A.8. The walk
continues for a time t and at the end of this time interval the

observation is made as to whether or not the particle has remained

fe mP Sv m—
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within the absorbing boundary C. Perform No such random walks
and count the numbers of particles Nt which - have not left

the region during the time interval (0,t)! Q(xo,yo,t) can be

approximated by

o]
o
&
2
'
W
(¢9)

The lowest'eigenValue kl may now be calculated by the

expression

Ntl | Ntz
, lnﬁ—— - lan- |
k = 2 - O. ) (A.39)
‘1 £ -t _
2 1
Nt
" 1n 1
2 _ -2 ‘
kl =
Sty -y
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Figure 7. Photographs of Random Walks within (a) Circular,

(b) Rectangular and (c)'Triangular Boundaries
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